55 research outputs found

    Multi-Response Optimization of Abrasive Waterjet Machining of Ti6Al4V Using Integrated Approach of Utilized Heat Transfer Search Algorithm and RSM

    Get PDF
    Machining of Titanium alloys (Ti6Al4V) becomes more vital due to its essential role in biomedical, aerospace, and many other industries owing to the enhanced engineering properties. In the current study, a Box–Behnken design of the response surface methodology (RSM) was used to investigate the performance of the abrasive water jet machining (AWJM) of Ti6Al4V. For process parameter optimization, a systematic strategy combining RSM and a heat-transfer search (HTS) algorithm was investigated. The nozzle traverse speed (Tv), abrasive mass flow rate (Af), and stand-off distance (Sd) were selected as AWJM variables, whereas the material removal rate (MRR), surface roughness (SR), and kerf taper angle (θ) were considered as output responses. Statistical models were developed for the response, and Analysis of variance (ANOVA) was executed for determining the robustness of responses. The single objective optimization result yielded a maximum MRR of 0.2304 g/min (at Tv of 250 mm/min, Af of 500 g/min, and Sd of 1.5 mm), a minimum SR of 2.99 µm, and a minimum θ of 1.72 (both responses at Tv of 150 mm/min, Af of 500 g/min, and Sd of 1.5 mm). A multi-objective HTS algorithm was implemented, and Pareto optimal points were produced. 3D and 2D plots were plotted using Pareto optimal points, which highlighted the non-dominant feasible solutions. The effectiveness of the suggested model was proved in predicting and optimizing the AWJM variables. The surface morphology of the machined surfaces was investigated using the scanning electron microscope. The confirmation test was performed using optimized cutting parameters to validate the results

    Optimization of Activated Tungsten Inert Gas welding process parameters using heat transfer search algorithm: with experimental validation using case studies

    Get PDF
    The Activated Tungsten Inert Gas welding (A-TIG) technique is characterized by its capability to impart enhanced penetration in single pass welding. Weld bead shape achieved by A-TIG welding has a major part in deciding the final quality of the weld. Various machining variables influence the weld bead shape and hence an optimum combination of machining variables is of utmost importance. The current study has reported the optimization of machining variables of A-TIG welding technique by integrating Response Surface Methodology (RSM) with an innovative Heat Transfer Search (HTS) optimization algorithm, particularly for attaining full penetration in 6 mm thick carbon steels. Welding current, length of the arc and torch travel speed were selected as input process parameters, whereas penetration depth, depth-to-width ratio, heat input and width of the heat-affected zone were considered as output variables for the investigations. Using the experimental data, statistical models were generated for the response characteristics. Four different case studies, simulating the real-time fabrication problem, were considered and the optimization was carried out using HTS. Validation tests were also carried out for these case studies and 3D surface plots were generated to confirm the effectiveness of the HTS algorithm. It was found that the HTS algorithm effectively optimized the process parameters and negligible errors were observed when predicted and experimental values compared. HTS algorithm is a parameter-less optimization technique and hence it is easy to implement with higher effectiveness

    The Effect of Cooling Temperature on Microstructure and Mechanical Properties of Al 6061-T6 Aluminum Alloy during Submerged Friction Stir Welding

    Get PDF
    Submerged friction stir welding (SFSW) is a new modification of friction stir welding. In this paper, 6 mm thick 6061Al-T6 alloy plates were welded using the friction stir technique under normal air and submerged water conditions at 108 mm/min welding speeds and a rotational rate of 900 rpm. The cooling water temperature in SFSW varied at 0 °C, 35 °C, and 80 °C to clarify the effect of water temperature. The characteristic hourglass-shaped stir zone was observed in the macrostructure of all the samples. All the samples exhibited defect-free joints. The results revealed that the finer grain size of 2.43 μm was at 0 °C. The macrostructure of SFSW joints separated into the shoulder-driven zone and pin-driven zone due to the low-temperature difference between the environment and water media and the high heat absorption capacity of the water, which caused a more substantial cooling rate during water-submerged welded joints. The microhardness distribution of all the joints showed typical “W” shape characteristics. The microhardness for all submerged samples was higher than in normal air conditions due to the higher thermal cycling effect in submerged conditions. Improved dynamic recrystallization in the joint welded at 80 °C resulted in the highest tensile strength (~249 MPa) and microhardness (~95 HV)

    Parametric Optimization and Effect of Nano-Graphene Mixed Dielectric Fluid on Performance of Wire Electrical Discharge Machining Process of Ni55.8Ti Shape Memory Alloy

    Get PDF
    In the current scenario of manufacturing competitiveness, it is a requirement that new technologies are implemented in order to overcome the challenges of achieving component accuracy, high quality, acceptable surface finish, an increase in the production rate, and enhanced product life with a reduced environmental impact. Along with these conventional challenges, the machining of newly developed smart materials, such as shape memory alloys, also require inputs of intelligent machining strategies. Wire electrical discharge machining (WEDM) is one of the non-traditional machining methods which is independent of the mechanical properties of the work sample and is best suited for machining nitinol shape memory alloys. Nano powder-mixed dielectric fluid for the WEDM process is one of the ways of improving the process capabilities. In the current study, Taguchi’s L16 orthogonal array was implemented to perform the experiments. Current, pulse-on time, pulse-off time, and nano-graphene powder concentration were selected as input process parameters, with material removal rate (MRR) and surface roughness (SR) as output machining characteristics for investigations. The heat transfer search (HTS) algorithm was implemented for obtaining optimal combinations of input parameters for MRR and SR. Single objective optimization showed a maximum MRR of 1.55 mm3/s, and minimum SR of 2.68 µm. The Pareto curve was generated which gives the optimal non-dominant solutions

    Experimental Investigations of Using Aluminum Oxide (Al2O3) and Nano-Graphene Powder in the Electrical Discharge Machining of Titanium Alloy

    Get PDF
    In the present study, a comprehensive parametric analysis was carried out using the electrical discharge machining of Ti6Al4V, using pulse-on time, current, and pulse-off time as input factors with output measures of surface roughness and material removal rate. The present study also used two different nanopowders, namely alumina and nano-graphene, to analyze their effect on output measures and surface defects. All the experimental runs were performed using Taguchi’s array at three levels. Analysis of variance was employed to study the statistical significance. Empirical relations were generated through Minitab. The regression model term was observed to be significant for both the output responses, which suggested that the generated regressions were adequate. Among the input factors, pulse-off time and current were found to have a vital role in the change in material removal rate, while pulse-on time was observed as a vital input parameter. For surface quality, pulse-on time and pulse-off time were recognized to be influential parameters, while current was observed to be an insignificant factor. Teaching–learning-based optimization was used for the optimization of output responses. The influence of alumina and nano-graphene powder was investigated at optimal process parameters. The machining performance was significantly improved by using both powder-mixed electrical discharge machining as compared to the conventional method. Due to the higher conductivity of nano-graphene powder, it showed a larger improvement as compared to alumina powder. Lastly, scanning electron microscopy was operated to investigate the impact of alumina and graphene powder on surface morphology. The machined surface obtained for the conventional process depicted more surface defects than the powder-mixed process, which is key in aeronautical applications.This research received some help from the Basque government through University research groups, grant IT1573-22. Authors work in cooperation under a common agreement in the field of EDM

    Multi-Response Optimization of WEDM Process Parameters for Machining of Superelastic Nitinol Shape-Memory Alloy Using a Heat-Transfer Search Algorithm

    Get PDF
    Nitinol, a shape-memory alloy (SMA), is gaining popularity for use in various applications. Machining of these SMAs poses a challenge during conventional machining. Henceforth, in the current study, the wire-electric discharge process has been attempted to machine nickel-titanium (Ni55.8Ti) super-elastic SMA. Furthermore, to render the process viable for industry, a systematic approach comprising response surface methodology (RSM) and a heat-transfer search (HTS) algorithm has been strategized for optimization of process parameters. Pulse-on time, pulse-off time and current were considered as input process parameters, whereas material removal rate (MRR), surface roughness, and micro-hardness were considered as output responses. Residual plots were generated to check the robustness of analysis of variance (ANOVA) results and generated mathematical models. A multi-objective HTS algorithm was executed for generating 2-D and 3-D Pareto optimal points indicating the non-dominant feasible solutions. The proposed combined approach proved to be highly effective in predicting and optimizing the wire electrical discharge machining (WEDM) process parameters. Validation trials were carried out and the error between measured and predicted values was negligible. To ensure the existence of a shape-memory effect even after machining, a differential scanning calorimetry (DSC) test was carried out. The optimized parameters were found to machine the alloy appropriately with the intact shape memory effect

    Opportunistic Use of Successive Interference Cancellation in Reverse TDD HetNets

    Get PDF
    Cross-tier interference management is one of the major challenges in heterogeneous cellular networks (HetNets). Though the network throughput increases due to a better area spectral efficiency of a HetNet, there is possibility that high interference will make few link capacities close to zero when users regard interference as noise (IAN). In this letter, successive interference cancellation (SIC) is used to cancel the cross-tier interference in a reverse time division duplexing (RTDD) scheme. We demonstrate that by opportunistic use of SIC, a minimum guarantee on the sum link capacity can be ensured for an RTDD HetNet. This minimum sum link capacity is later on proved to be the maximum that can be achieved by orthogonal resource allocation schemes. Through system-level simulations for random allocation, it is shown that the proposed scheme is better than using SIC and IAN alone. To further improve the overall system capacity, an optimization problem for selecting co-channel users is formulated, and the Hungarian algorithm is employed to solve it.acceptedVersionPeer reviewe

    Energy Reduction Multipath Routing Protocol for MANET Using Recoil Technique

    No full text
    In Mobile Ad-hoc networks (MANET), power conservation and utilization is an acute problem and has received significant attention from academics and industry in recent years. Nodes in MANET function on battery power, which is a rare and limited energy resource. Hence, its conservation and utilization should be done judiciously for the effective functioning of the network. In this paper, a novel protocol namely Energy Reduction Multipath Routing Protocol for MANET using Recoil Technique (AOMDV-ER) is proposed, which conserves the energy along with optimal network lifetime, routing overhead, packet delivery ratio and throughput. It performs better than any other AODV based algorithms, as in AOMDV-ER the nodes transmit packets to their destination smartly by using a varying recoil off time technique based on their geographical location. This concept reduces the number of transmissions, which results in the improvement of network lifetime. In addition, the local level route maintenance reduces the additional routing overhead. Lastly, the prediction based link lifetime of each node is estimated which helps in reducing the packet loss in the network. This protocol has three subparts: an optimal route discovery algorithm amalgamation with the residual energy and distance mechanism; a coordinated recoiled nodes algorithm which eliminates the number of transmissions in order to reduces the data redundancy, traffic redundant, routing overhead, end to end delay and enhance the network lifetime; and a last link reckoning and route maintenance algorithm to improve the packet delivery ratio and link stability in the network. The experimental results show that the AOMDV-ER protocol save at least 16% energy consumption, 12% reduction in routing overhead, significant achievement in network lifetime and packet delivery ratio than Ad hoc on demand multipath distance vector routing protocol (AOMDV), Ad hoc on demand multipath distance vector routing protocol life maximization (AOMR-LM) and Source routing-based multicast protocol (SRMP) algorithms. Hence, the AOMDV-ER algorithm performs better than these recently developed algorithms

    Rate and Power Throttling for Traffic Asymmetry in Reverse TDD HetNets

    Get PDF
    In this paper, sum link capacity expressions for successive interference cancellation (SIC) and regarding interference as noise (IAN) in reverse time-division duplexing (RTDD) hetero-geneous cellular network are derived. The considered RTDD network always operates in a synchronized fashion such that if the macro tier is in the uplink (UL), then the small tier will be in the downlink (DL) and vice-versa. Rate and power throttling are used in the uplink (UL) for both IAN and SIC to consider an asymmetric traffic network (DL≫UL). System-level simulations are performed to compare the overall system throughput of IAN and SIC for different DL/UL ratios. It is observed that rate or power-throttled SIC performs better than rate-throttled IAN and worse than power-throttled IAN.publishedVersio
    corecore